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ABSTRACT
Qualitative research remains underused, in part due to 
the time and cost of annotating qualitative data (coding). 
Artificial intelligence (AI) has been suggested as a 
means to reduce those burdens, and has been used 
in exploratory studies to reduce the burden of coding. 
However, methods to date use AI analytical techniques 
that lack transparency, potentially limiting acceptance of 
results. We developed an automated qualitative assistant 
(AQUA) using a semiclassical approach, replacing Latent 
Semantic Indexing/Latent Dirichlet Allocation with a 
more transparent graph-theoretic topic extraction and 
clustering method. Applied to a large dataset of free-text 
survey responses, AQUA generated unsupervised topic 
categories and circle hierarchical representations of 
free-text responses, enabling rapid interpretation of data. 
When tasked with coding a subset of free-text data into 
user-defined qualitative categories, AQUA demonstrated 
intercoder reliability in several multicategory combinations 
with a Cohen’s kappa comparable to human coders 
(0.62–0.72), enabling researchers to automate coding on 
those categories for the entire dataset. The aim of this 
manuscript is to describe pertinent components of best 
practices of AI/machine learning (ML)-assisted qualitative 
methods, illustrating how primary care researchers 
may use AQUA to rapidly and accurately code large text 
datasets. The contribution of this article is providing 
guidance that should increase AI/ML transparency and 
reproducibility.

INTRODUCTION
Despite its value in studying complex public 
health issues, qualitative research remains 
underused.1 In part this stems from the time 
and cost of annotating data in a qualitative 
study, a process known as coding.2 There 
may also be a desire to publish quantitative 
data when it is available instead of waiting for 
the qualitative component to be completed,3 
and, for time-sensitive research questions like 
those related to COVID-19 behaviours, the 
time delay to complete traditional qualitative 
research may circumvent meaningful contri-
butions to public health crises.

Computer-Assisted Qualitative Data Anal-
ysis Software (CAQDAS) is commonly used 
to assist researchers with the management, 
organisation, and analysis of qualitative 
data.4 These software programs began as 
mechanisms to better organise and code 
data, and now include analytic tools such as 
word frequencies, word clustering, sentiment 
analysis and thematic analysis. All of these 
features help researchers construct themes 
from large datasets, but still require manual 
coding of data within the software package. 
The process of coding itself remains a time 
consuming, labour intense process.

Natural language processing (NLP) has 
been used to code qualitative data in explor-
atory mixed methods research.5 6 Guetterman 
et al found NLP coding to be time-efficient and 
comparable to human coders in identifying 
major themes, but lacking in the ability to 
identify nuances.5 NLP using latent Dirichlet 
allocation (LDA) as an initial modelling tech-
nique was able to generate topic categories 
from which the researcher identified overall 
theme sets similar to traditional methods.7 
Modern unsupervised NLP (especially for 
topic extraction or document classification) 
has extended beyond the linear algebraic 
techniques like Latent Semantic Indexing 
(LSI)8 or probabilistic techniques like LDA.9 
More recently, Chang et al used human 
thematic analysis to inform NLP algorithms 
to evaluate clinical records to identify meta-
inferences about barriers related to rapid 
adoption of virtual medicine visits during 
COVID-19, and separately to evaluate short 
text survey responses.6

These approaches have been extended 
for time-varying topic analysis of text corpi, 
including the use of Tensor decomposi-
tion methods by Lowe and Berry.10 Current 
‘best in class’ approaches use Transformer 
approaches,11 that is, a deep neural network 
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approach to language analysis. These techniques can 
be extended for use in time-varying topic analysis, for 
example, for Twitter analysis.12 Techniques using Topic 
Modelling and Word2Vec produced similar outcomes 
to traditional qualitative methods in a proof-of-concept 
application in public health research.13 However, the 
challenge with transformer methods is that, even more 
than LDA, the approach is fundamentally opaque (as is 
the case with most deep learning techniques) and conse-
quently may be subject to slow uptake by the qualitative 
science community. Indeed, the lack of transparency 
and poor reproducibility of artificial intelligence (AI)/
machine learning (ML) results have led to calls for best 
practice guidance in AI/ML research.14

We developed an AI/ML platform to augment quali-
tative analysis by automating components of qualitative 
coding—the time-intensive process of matching specific 
qualitative input into response categories developed by 
the research team—that avoids the opacity of LDA and 
Transformer approaches. We further integrated visual 
analytics into the platform to generate useful, visually 
appealing data displays to facilitate rapid data exploration 
and knowledge discovery when analysing large datasets 
by reducing dimensionality15 and showing hierarchies 
within data.16–18 The objective of this paper is to describe 
a model methodology for primary care researchers to use 
our automated qualitative assistant (AQUA) to augment 
qualitative coding of large datasets in an effort to broaden 
the feasibility of large-scale qualitative research.

Qualitative methods for AQUA application
A detailed review of qualitative analytic methods is 
beyond the scope of this paper. AQUA may be integrated 
into qualitative design at two stages of analysis. In early 
analysis, AQUA enables researchers to conduct rapid 
thematic analysis of large free-text datasets and generate 
visually interpretable outputs. After human coders analyse 
a subset of a large qualitative dataset, AQUA may be used 
to code some thematic categories across the remaining 
dataset, markedly increasing the scope of analysis a given 
team may complete. AQUA is designed to analyse free-
text answers to survey questions. Careful question design 
and data collection methods will improve AQUA’s accu-
racy. An a priori interpretive framework is necessary to 
maintain the integrity of the qualitative analysis, and care 
is needed when reporting AQUA-generated results to 
avoid over-reach and improve generalisability.

Question design and data collection
AQUA capitalises on the epistemological compatibility 
between text mining and qualitative research.19 Human-
generated text is rife with idiom, non-standard expres-
sions and jargon. AI/ML that works beautifully in a sterile 
environment may not work when confronted with the 
gritty reality of human experience.20 Researchers must, 
therefore, carefully construct qualitative questions to 
minimise idiosyncrasies without compromising the goal of 
open-ended responses. We recommend that draft survey 

questions be refined using at least 2 rounds of cognitive 
interviewing procedures using the think-aloud tech-
nique,21 22 followed by pilot testing on a sample of partic-
ipants from the desired study populations. Throughout 
this iterative improvement process, questions should be 
refined to improve answers’ qualitative sensibility and 
linguistic harmony. Qualitative sensibility ensures that the 
responses are indeed answering your questions. Linguistic 
harmony improves AQUA’s ability to properly categorise 
responses. For population samples markedly different 
from the researchers, we recommend employing popu-
lation sample focus groups, which have been used with 
success in cross-cultural and cross-linguistic analysis.23

Results interpretation and reporting
We compared coding between a human coding team and 
AI/ML algorithms by comparing the AI/ML-human inter-
coder reliability (ICR) to the intrateam ICR of human 
coders. AI/ML-human ICRs which are substantially lower 
than the human intra-team ICR indicate that the given 
data is not easily matched to given categories, and is thus 
not amenable to automated analysis. ICR is commonly 
measured using Cohen’s kappa or Krippendorff’s 
alpha.24 For simplicity, where it applies we recommend 
Cohen’s kappa. While there is not universal agreement 
on a minimum acceptable ICR to indicate clinical utility, 
it is reasonable to use the interpretation rubric developed 
by Landis and Koch25: values <0 = disagreement, between 
0 and 0.20=slight, 0.21–0.40=fair, 0.41–0.60=moderate, 
0.61–0.80=substantial and 0.81–1=nearly perfect agree-
ment. Researchers should select a minimum ICR based 
on the intended use of anticipated results. For example, 
if using AQUA to code data in a grounded theory study 
to develop a theory with immediate clinical implications 
(ie, vaccine distribution), researchers might require ICRs 
indicating near perfect agreement and set an accept-
able ICR cut-off of ≥0.81. Researchers looking to better 
understand a given populations’ lived experience using 
a phenomenology design might not wish to miss poten-
tial areas of exploration, and therefore include ICRs that 
indicate substantial, or even moderate agreement, with 
acceptable ICR cutoffs set at ≥0.61 or ≥0.41, respectively.

Because AI/ML techniques are able to analyse very 
large sets of data, including dozens of analytic categories, 
the AI/ML output can include not only single category 
comparisons, but dozens of topic clusters, all with a wide 
range of ICRs. To maximise generalisability and reproduc-
ibility, it is incumbent on researchers to clearly identify a 
priori ICR cut-offs and category selection requirements, 
and when interpreting results avoid any temptation to 
select category topics simply to increase ICR, or include 
desired topics by lowering ICR targets post hoc.26

Researchers must clearly report their a priori interpre-
tation frameworks. If unanticipated results are found that 
suggest a new direction for study that fall outside this 
framework, it is reasonable to report these results, with 
the caveat that they must be identified as a post hoc result, 
which may be less generalisable. For example, suppose 
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the researchers using the grounded theory design above, 
with an acceptable ICR cut-off of 0.70, found an inter-
esting coding outcome with an ICR of 0.60. Because that 
falls outside their a priori framework, they must reject 
that outcome in their primary results. It would be appro-
priate, however, to comment that while rejected for this 
work, the moderate agreement found indicates an area 
that warrants further study.

Illustrating the application of AQUA
To illustrate the utility of AQUA to primary care 
researchers analysing large text datasets, we present an 
exemplar study in which AQUA was used to code free-text 
responses to a survey about public health recommenda-
tions related to COVID-19.27 28 Figure 1 provides an over-
view of how AQUA was integrated into qualitative analysis 
to provide immediate, usable outputs and then enable 
researchers to code elements from the entire dataset.

Data source
The data source was 3148 free-text responses from 538 
participants (stratified from 5948 total respondents) 
who completed a survey to explore the role of trust 
within information sources related to COVID-19.27 Six 
human coders analysed the data using traditional induc-
tive thematic analysis,29 generating a codebook which 

identified 11 qualitative categories and 72 subcategories 
(categories).

Data analysis
Early unsupervised analysis
AQUA uses two methods to code the raw data using this 
codebook: a semiclassical approach that replaces LSI/
LDA with a graphtheoretic topic extraction and clustering 
method12 30 and a more modern transformer method 
based on BERT-based solutions and top2vec.31 The graph 
theoretic method is developed in the spirit of Miller’s 
parsimonious topic models32 but with the Bayesian Infor-
mation Criterion for determining optimal topic clustering 
replaced by a maximum modularity (ie, spectral33) clus-
tering.34 We choose these two methods because (i) BERT 
and top2vec based methods have already been shown to 
outperform LDA in information theoretic terms while 
(2) graph theoretic methods lend themselves to visualisa-
tion, which is an important element of interpreting data.

The unsupervised clustering approach used is a vari-
ation on both LSI8 and Spectral Clustering,34 using a 
maximum modularity subroutine that eliminates the 
requirement that users choose the number of free-form 
text response clusters a priori. Responses are clustered 
into groups with similar linguistic features by creating 
a response similarity graph and then using maximum 
modularity clustering to find ‘response communities’ 
within the graph. Bags of words for each automatically 
generated response cluster are computed using a word 
assignment model that minimises mutual information 
between the bags of words (subject to some constraints). 
The dimension of vocabulary space is first reduced using 
a non-linear dimensional reduction method. Specifically, 
a trimmed term-response matrix is formed by removing 
common and non-key words. A term-graph is then formed 
and maximum modularity clustering is used to find an 
orthogonal topic basis. Graph edges are words comen-
tioned in a response. This process is similar to principal 
components analysis35 (or LSI8) but the projection is 
mediated by the graph clustering step, which handles 
non-linearity in a similar manner to manifold learning.36 
Hierarchical clustering is then performed by iteratively 
executing the unsupervised clustering procedure for 
each individual response community so that the linguistic 
diversity of each subtopic can be preserved.

Analysis of AQUA’s coding accuracy
Supervised word/phrase assignment of words to response 
clusters (eg, human or machine-created code categories) 
is accomplished by solving a linear assignment problem37 
of words/phrases to preclustered response groups. The 
assignment problem minimises a linearised version of 
the mutual information between text clusters (in word/
phrase space) resulting in a parsimonious weighted 
assignment of words/phrases to responses. These words/
phrases characterise the underlying language within the 
response groups (code categories). The weighted bag of 

Figure 1  Procedural diagram for the application of AQUA 
to free-text data used in the Illustration. AQUA, automated 
qualitative assistant.
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words were then used to assign new text to one of the pre-
existing categories.

Unlike traditional machine-learning processes where 
the algorithm trains on 90% of the dataset and tests on 
10% of the dataset, we trained on much smaller dataset 
subsets. This is because human coding is time-expensive 
and we sought to develop algorithmic robustness to 
perform well using small training datasets. AQUA was 
tasked with coding the raw data. Item codes were assigned 
using cosine-similarity on text in the response and the 
weighted bag of words identified during the supervised 
learning process. In using this approach, we relied on the 
fact that text is highly separable38 and adapted the graph-
theoretic methods that underlie our initial methods as 
a graph-based manifold regularisation approach39 (in a 
semisupervised context).

Summary of analysis
Unsupervised clustering and topic selection were used to 
identify areas of importance to survey respondents and 
relationships between responses. Highly accurate coding 
categories by AQUA were identified for further automated 
analysis. To evaluate the accuracy of AQUA’s coding, a 
human coding team first coded the same data using the 
same codebook. The human team had an intrateam ICR 
using Cohen’s kappa of ≥0.65 among six human coders 
(two coders per response). For an AQUA-coded topic 
to be accepted, we set the AQUA-human ICR cut-off 
at ≥0.65 (at least as good as the intrahuman team ICR). 
Categories and clusters of categories with AQUA-human 
ICRs ≥0.65 were deemed suitable for AQUA coding of the 
entire dataset (over 35 000 free-text responses from 5948 
respondents28).

RESULTS
AQUA generated a circle hierarchy of free-text responses 
and also seven unsupervised topics (figure  2). This 
enabled rapid assessments of key issues important to 
survey participants, and also identified relationships 
between responses in an easy-to-read circle hierarchy.

AQUA’s kappa for coding all categories was low 
(kappa  ~0.45), reflecting the challenge of automated 
analysis of diverse language. However, for several three-
category combinations (with less linguistic diversity), 
AQUA performed comparably to human coders, with an 
ICR kappa range of 0.66 to 0.72 based on test-train split 
(table 1; see online supplemental material for all three-
category results.) AQUA may appropriately be applied to 
the entire dataset for categories and groups of categories 
with AQUA-human ICRs ≥0.65. Figure 3 shows the rela-
tionship between automatically generated message clus-
ters (topics) and manually coded categories.

A secondary result was the time spent by AQUA 
(including human interpretation of AQUA’s results) 
compared with the time spent by human coders. The 
human coding team spent approximately 30 person-
hours to complete their traditional coding. All results 

generated by AQUA (including human interpretation) 
took approximately 5 hours.

DISCUSSION
This study demonstrates the feasibility of using AI 
methods to augment certain kinds of qualitative research. 
Like current exploratory NLP applications, AQUA offers 
coding capability beyond was is available in current 
CAQDAS applications. The primary benefit of the AQUA 
platform over current exploratory NLP applications5 6 is 
the transparency of the graph theoretic approach, which 
avoids the opacity inherent to NLP based on LDA or 
Transformer methods.11 Results of our study suggest 
that graph-theoretic methods are well suited to augment 
qualitative researchers during coding, and when inte-
grated into a data visualisation and statistical comparison 
programme offers qualitative researchers a powerful assis-
tant to enable rapid, rigorous, analysis of large, qualitative 
datasets.

Unsupervised applications of AQUA offer immediate 
topic generation and a circle hierarchy of responses 
which enables rapid analysis without time-intensive 
human coding. If human coding is completed on a subset 
of data, for coding categories or clusters of categories in 
which AQUA’s ICR meets a priori ICR cutoffs, AQUA 
may then be applied to those categories across the entire 
dataset. In the illustration, human coding time to code 
3148 free-text responses from a stratified samples of 538 
respondents enabled AQUA to code over 35 000 free-
text responses from the entire pool of 5948 respondents 

Figure 2  Unsupervised clustering (circle hierarchy) of survey 
responses. (A) Circles represent a linguistic community or 
topic. Nested circles represent hierarchical organisation. 
The smallest circles are individual survey responses. The 
seven parent unsupervised topics are labeled. (B) Parent 
unsupervised topics.
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for certain categories and category clusters—a 10-fold 
increase in coding power.

Train-test splits of 20%–80% appear adequate to achieve 
ICR  >0.7 for certain combinations of topics. Variance 
of kappas by subtopic is not unexpected; categories of 
inquiry that themselves use complex linguistic patterns, 
or whose associated raw text to be coded to that category 
use complex linguistic patterns, will be more challenging 
for AI/ML algorithms to match human ability. Our kappa 
range of 0.66–0.72 represents ‘substantial agreement’ 
under Landis and Koch’s rubric.25 For particularly chal-
lenging datasets or discovery applications, lower ICRs may 
be acceptable. For example, a combination of topics with 
an ICR of 0.45 (moderate agreement) might not suggest 
changes to clinical practice, but might serve as a valuable 
indicator of where to direct future research or conduct 
additional human analysis. While the generalisability of 

results may vary with the ‘acceptable’ ICR, as noted above, 
the integrity of qualitative analysis may be maintained by 
reliance on systematic application of an a priori interpre-
tive framework.26

We also caution against researchers modifying their 
category selection to boost kappas using AQUA (or any 
other AI/ML technique). While it is certainly appropriate 
to be precise in category descriptions, it is incumbent on 
the researcher to match the technique to the data, and 
not vice versa. Some categories or their answers may 
simply not be amenable to augmentation using this tech-
nique. Further, it is important to appreciate that coding 
accuracy is necessary but insufficient for interpretation. 
While qualitative models will continue to evolve, incor-
porating increasingly sophisticated AI/ML algorithms, 
the heart of interpretation and sensibility lies in human 
interpretation.

Table 1  Kappa values evaluating the inter-rater reliability (agreement) between human coders and supervised training of 
three-topic training models

Topics

Train percentage

0.2 0.4 0.6 0.8

124 0.67 (±0.01) 0.70 (±0.02) 0.68 (±0.03) 0.70 (±0.04)

135 0.66 (±0.02) 0.66 (±0.02) 0.67 (±0.05) 0.67 (±0.06)

145 0.67 (±0.02) 0.71 (±0.02) 0.70 (±0.02) 0.72 (±0.02)

245 0.67 (±0.04) 0.69 (±0.03) 0.71 (±0.03) 0.72 (±0.06)

257 0.68 (±0.02) 0.70 (±0.01) 0.71 (±0.02) 0.70 (±0.02)

Topic labels are: (1) distrust, (2) media messaging, (3) trusted sources of information, (4) personal medical concerns, (5) family concerns, (6) 
societal concerns, (7) barriers to recommendations, (8) no worries, (9) other Broad.

Figure 3  Human-coded topics (rows) are compared with unsupervised topic communities (columns). Each row depicts the 
distribution of responses for each humancoded topic across unsupervised topic communities. The heat chart to the right shows 
the gradient color scheme for percent-agreement (darker is better agreement).
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Contribution to family medicine and community health 
research and future directions
AQUA’s use of a graph-theoretic approach advances 
the theory of AI/ML in clinical research. Our methods 
advance researchers’ approach to AI/ML applications in 
qualitative research, and are particularly useful for very 
large datasets on which some level of qualitative analysis 
is already completed. Once a set of category coding is vali-
dated on a sample, AQUA enables researchers to rapidly 
conduct mixed methods analysis on the entirety of the 
dataset.

In addition to facilitating greater analysis of other 
existing survey data, the platform and methods may be 
applied to any set of text data, such as social media posts. 
This offers researchers a method of rapid and in-depth 
assessment of any subject of interest and moment, 
which may improve scientific recommendations, in turn 
improving policy decisions. The next steps in advancing 
the AQUA platform are to verify its accuracy across other 
existing free-text surveys and social media platforms.

Limitations
Limitations of AQUA include that its augmentation 
focuses on supporting free-text analysis, which may not 
translate to other areas of qualitative research. Our testing 
of the AQUA approach is limited to a single dataset, 
which has unique features that may not be present in 
other large qualitative datasets. Another limitation is 
that qualitative analysis is still required on a sample of a 
larger dataset in order to calibrate AQUA and confirm 
its kappa, and is also required to generate the categories 
for coding in order to compare the AQUA-human ICR 
with the human team’s ICR. Finally, AQUA is not able to 
match human ICRs for some categories; to analyse those 
categories across the entire dataset, human teams must 
still do the coding.

CONCLUSION
Partial automation of qualitative research studies enables 
researchers to conduct rigorous, rapid studies that 
more easily incorporate the many benefits of qualitative 
research. Further research is needed to determine the 
extent to which AQUA may be applied to other qualita-
tive data, and the extent to which the algorithms used to 
augment coding may also be used to augment category 
development.
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